

Annual member Plenary Meeting (online)

Policy and technology session:

Overcoming barriers to transboundary movement, lessons learned from A-Thermal in South Africa and Zimbabwe

Destruction of R12 gas cylinders

Mr. Martin Botha

MScEng, PrEng

2 July 2025

INTRODUCTION

- Refrigerant stock identified need for responsible management
- Co-ordination between parties: owner (generator), service provider, financer, regulator
- Zimbabwe: 6x 1 ton cylinders R12 at 3 locations
- A-Thermal was awarded the contract from GIZ for the <u>collection</u> and <u>safe destruction</u> of these cylinders

A-Thermal operates a thermal treatment facility for hazardous and general wastes in Olifantsfontein since 2004

STAKEHOLDERS

- Zimbabwe National Ozone Unit (NOU): Refrigerant owners ("generator")
- GIZ GmbH: project management and funding
- South Africa NOU and Department of Forestry, Fisheries and Environmental (DFFE): transborder movement and permit
- A-Thermal Retort Technologies (Pty) Ltd: hazardous waste treatment facility

Challenge #1: Co-ordination and agreements

Resolution: Clear structure needed and contracting

Challenge #2: Documentation submission and timeframes for permits

Resolution: Stick to established regulations, communication to update on progress

FRAMEWORK

Microwave Plasma
Gas Phase Catalytic

Super-Heated Stear

UNEP

2022: UNEP Technology and Economic Assessment Panel (TEAP)

Table 4-1: Recommended Technologies and Their Applicability

			•
	Applical	bility	
Technology	Concentrated	Concentrated	
	CFCs and HCFCs	Halons	
Cement Kilns	Recommended		
Liquid Injection Incineration	Recommended	Recommended	A-Thermal thermal oxidiser
Gaseous/Fume Oxidation	Recommended	Recommended	(secondary chamber / afterburne
Reactor Cracking	Recommended		
Rotary Kiln Incineration	Recommended	Recommended	A-Thermal rotary kiln
Argon Plasma Arc	Recommended	Recommended	(primary chamber)
Inductively-Coupled Radio-Frequency	Recommended	Recommended	, ,
Plasma			270 11 11
Miliogen Flasina Al			CFCs, halons and other
Microwaya Plasma ODS can be fed if	nto the rotary kiln or	directly into the	aneroumer.

Rotary kilns are widely used in developed countries for the incineration of hazardous wastes, including chlorinated solvents (CCl₄, CHCl₃, CH₃Cl,

CH₃CCl₃), and toxic waste, such as PCBs. In Europe and Japan they have been

Л

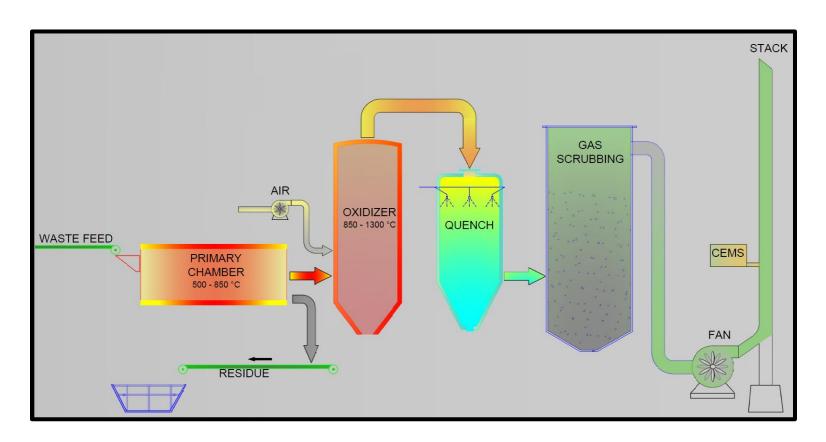
for the environment

SAFE DESTRUCTION

Challenge #2: Demonstration of capability, readiness and compliance

Resolution:: Licensing, audits, site visit, subject matter experts

- A-Thermal operating permits:
 - Waste Management Licence (WML) DFFE
 - Includes ODS and POPs
 - Air Emission Licence (AEL) City of Ekurhuleni
- Engagement with experts:



PROCESS OVERVIEW

Challenge #3: Correct plant design and operation

Resolution: Purpose built for hazardous waste treatment

SPECIFIC CONDITIONS

Process validation

✓ Destruction Removal Test (DRE) by independent expert

Completed by A-Thermal

Equipment

- ✓ Minimum operating temperature of 1100 °C
- ✓ Residence time of 2 seconds
- ✓ Calibrated scales / weighbridges for before/after weights
- ✓ Feeding, metering and interlocks of material flow into oxidiser

Monitoring and reporting

- ✓ Chain of custody of material
- ✓ Sampling and analysis requirements
- ✓ Process conditions (temperatures, emission concentrations)

EXPERIENCE

Year: 2024

R11 9 660 kg: destroyedR12 13 760 kg: destroyed

 100 year GWP (kg CO₂e / kg ODS)

 R11 4 750
 45 855
 ton CO₂e

 R12 10 900
 149 984
 ton CO₂e

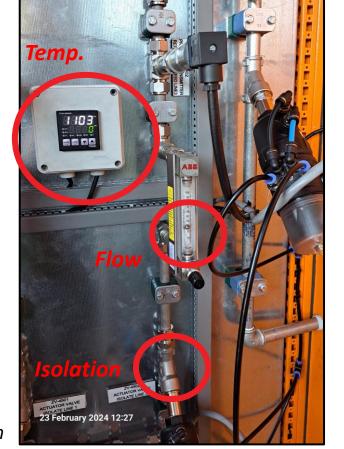
 Total:
 195 869
 ton CO₂e

for the environment

EQUIPMENT

- Leak checks and interlocks
- Emission monitoring (12 species)

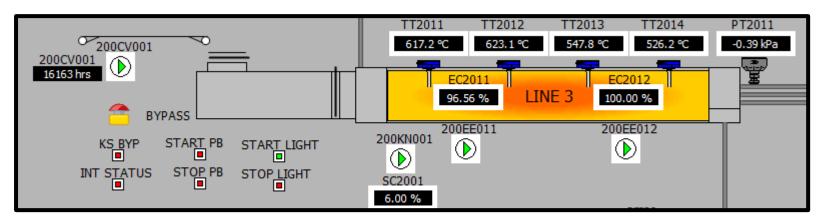
Capable to treat liquid and gas containers

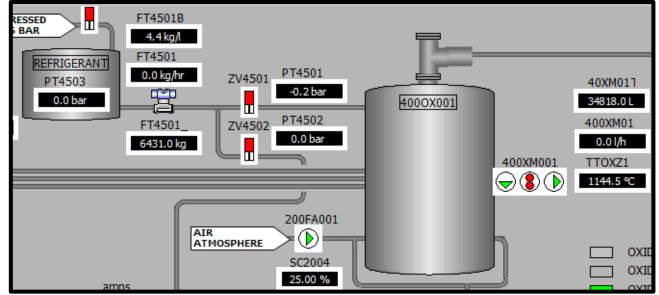

Challenge #4:

Condition of cylinders / containers

Resolution:

Upfront communication regarding connections and integrity.


Local suppliers for piping connectors



Precise metering and interlock station

PROJECT: OBJECTIVES

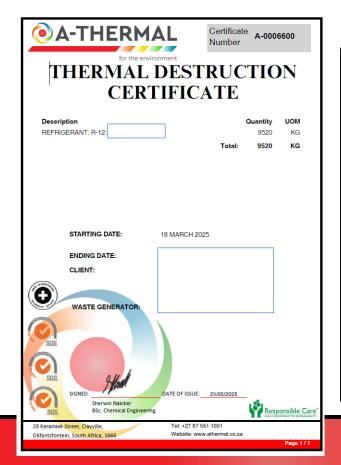
- Obtain necessary permits and authorization for movement of refrigerant cylinders
- Collect of 6x 1 ton R12 refrigerant from in Zimbabwe
- Transport to A-Thermal's plant at 28 Keramiek Street, South Africa
- Analysis of cylinders
- Destruction at A-Thermal's plant
- Accurate quantification of the destruction based on calibrated scales
- Engineering report

Challenge #5:

Analysis of refrigerant in South Africa

Resolution:

- (a) Use of screening analyzer to verify contents
- (b) International laboratory e.g. AHRI Standard 700 challenges as well



DOCUMENTATION

<u>Challenge #6</u>: Clear documentation

Resolution: Reporting requirements defined and submitted Report:

- The engineering report gives a summary of the steps taken for the destruction;
- Photographs, analysis results, calibration certificates.

Parameter		Description			Unit		
PID-001-TTOXZ1-PV ValueY		Line 1 furnace (oxidiser) temperature			°C		
PID-001-TT-OXZ2-PV ValueY	Line 3	Line 3 furnace (oxidiser) temperature			°C		
PID-001-FT4501-PV ValueY	Flow to	Flow transmitter: refrigerant feed			kg/hr		
PID-004-AIT-CO-PV ValueY	Carbo	Carbon monoxide concentration at stack			mg/Nm³		
PID-004-AIT-O2-PV ValueY	Oxyge	Oxygen concentration at stack			vol %		
Table 2.3.3 Average plant r	eadings March 20	25	April 2025	M	lay 2025	Average	Unit
Line 1 furnace temperature	11	49	n/a		1158	1153	°C
Line 3 furnace temperature	11	68	1158		1164	1163	°C
Line 3 iurnace temperature		_					
Flow transmitter: refrigerant	28.	.48	20.73		52.96	34.05	kg/hr

CONCLUSIONS

- Correct application of Best Available Technology (BAT) processing
- Compliance to current best practice activities and country laws
- Ensures protection of environment and sustainable operations
- Co-operation, communication, following regulation structures

Maloti-Drakensberg Park UNESCO World Heritage Site

THANK YOU

Mr. Martin Botha

Office: +27 11 316 1800 Mobile: +27 72 255 6762

martin@athermal.co.za

www.athermal.co.za

MAKE SUSTAINABILITY A CHOICE

